

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СТЕКЛОРЕЗЫ АЛМАЗНЫЕ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

FOCT 10111-85

Издание официальное

E

РАЗРАБОТАН Министерством станкостроительной и инструментальной промышленности

ИСПОЛНИТЕЛИ

Р. Ф. Кохан, А. Я. Головань, Е. А. Севостьянова, А. М. Кунис

ВНЕСЕН Министерством станкостроительной и инструментальной промышленности

Зам. министра Н. И. Ендовицкий

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 27 ноября 1985 г. № 3736

СТЕКЛОРЕЗЫ АЛМАЗНЫЕ

Технические условия

Glass cutters with diamond tools. Specifications

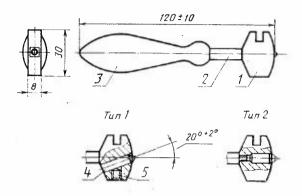
ГОСТ 10111—85

Взамен ГОСТ 10111—74

ОКП 30 7177; 39 7277

Постановлением Государственного комитета СССР по стандартам от 27 ноября 1985 г. № 3736 срок действия установлен

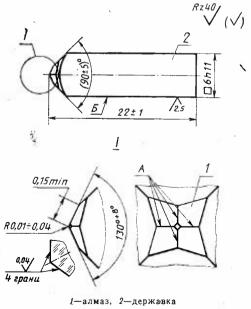
с 01.01.87 до 01.01.92


Несоблюдение стандарта преследуется по закону

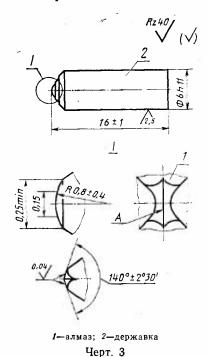
Настоящий стандарт распространяется на стеклорезы, оснащенные резцами с природными и синтетическими алмазами, предназначенные для резки листового стекла.

Стандарт устанавливает требования к стеклорезам, изготавливаемым для нужд народного хозяйства и экспорта.

1. ТИПЫ И ОСНОВНЫЕ РАЗМЕРЫ


- 1.1. Стеклорезы должны изготавливать типов;
- 1 с рабочей частью в виде четырехгранной пирамиды;
- 2 с криволинейной режущей кромкой рабочей части.
- 1.2. Основные размеры стеклорезов должны соответствовать указанным на черт. 1.

1—молоточек; 2—соединительный стержень или трубка: 3—ручка; 4—резец; 5—винт Черт.


Примечание. Чертеж не определяет конструкцию стеклореза.

1.3. Размеры резцов для стеклорезов типа 1 должны соответствовать указанным на черт. 2.

Черт. 2

1.4. Размеры резцов для стеклорезов типа 2 должны соответствовать указанным на черт. 3.

1.5. Масса природных алмазов и зернистость порошков из синтетических алмазов должны соответствовать указанным в таблице.

Обозначение стеклореза	Обозначение резца	Тип стекло- реза или резца	Исходная масса природного алмаза, караты	Зернистость порошка из синтетических алмазов	
3890-0101	3890-0001		0,020,04		
3890-0102	3890-0002	i ,	0,050,10	_	
3890-0103	3890-0003		0,11-0,16	45	
3890-1101	3890-1001		-	630/500; 500/400	
3890-0111	3890-0011		0,02-0,04		
3890-0112	3890-0012		0,05-0,10	Ī —	
3890-0113	3890-0013	2	0,11-0,16		
3890-1102	3890-1002			630/500 и крупне	

Пример условного обозначения стеклореза типа 2, оснащенного резцом 3890-0012:

3890-0112 ΓΟCT 10111-85

То же, с декоративной отделкой (ДО) молоточка:

3890-0112 ДО ГОСТ 10111-85

условного обозначения резца типа 1 с исходной массой природного алмаза 0,05-0,10 кар.: 3890-0002 FOCT 10111-85

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Алмазные стеклорезы и резцы должны изготавливать в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.
- 2.2. Для изготовления стеклорезов (резцов) должны применять природные алмазы X группы, подгруппы lpha, 1 и 2 качества; XXIX группы, подгруппы а, 1 и 2 качества или алмазные порошки марки АС50 по ГОСТ 9206-80.

Допускается применение других марок порошков синтетических

алмазов.

2.3. На обработанной поверхности алмаза не должно быть трещин, сколов и выкрашиваний на расстоянии от вершины:

- до 0,3 мм природного алмаза; до 0,15 мм синтетического алмазного порошка зернистостью 630/500 и крупнее;
- до 0.12 мм синтетического алмазного порошка зернистостью 500/400.
- 2.4. Алмаз должен быть закреплен в державке резца посредством пайки серебряным припоем марки ПСр50Кд по ГОСТ 19738—74.

Допускается крепление алмаза другим припоем и способом.

- 2.5. Допуск перпендикулярности проекции режущей кромки Aрезцов типа 1 (на плоскости, нормальной оси державки) к поверхности Б должен быть не более 30'.
- $2.6.\$ Допуск прямолинейности проекции режущей кромки A резцов типа 2 (на плоскости, нормальной оси державки) не должен превышать 0.015 мм.

2.7. Детали стеклореза должны изготавливать:

державку резца — из стали марок 15, 20, 25 по ГОСТ 1050—74:

молоточек и соединительный стержень (трубку) — из стали марок 20, 25, 30 по ГОСТ 1050-74 или латуни марки ЛС59-1 по ΓΟCT 15527—70;

ручку — из фенопласта по ГОСТ 5689-79 или полистирола по ΓΟCT 20282—74.

Допускается применение других материалов, по своим механическим свойствам не уступающих указанным.

2.8. На поверхности деталей стеклореза не допускаются вмя-

тины, раковины, заусенцы и следы коррозии.

2.9. На поверхность молоточка и соединительного стержня (трубки), изготовленных из стали, должны наносить защитно-декоративное покрытие по ГОСТ 9.301—78, ГОСТ 9.303—84, ГОСТ 9.306—85.

Допускается наносить защитно-декоративное покрытие на молоточек и соединительный стержень (трубку), изготовленные из латуни.

2.10. Допуск параллельности режущей кромки резца стеклореза относительно боковой поверхности корпуса молоточка, приле-

гающей при резке к линейке, не должен превышать 1°30'.

2.11. Наработка до отказа стеклореза (резца) — 11500 м при резке листового стекла по ГОСТ 111—78 толщиной до 5 мм.

3. ПРАВИЛА ПРИЕМКИ

3.1. Для проверки соответствия стеклорезов (резцов) требованиям настоящего стандарта проводят приемочный контроль и периодические испытания.

3.2. Приемочному контролю на соответствие требованиям пп. 1.3, 1.4, 2.3, 4.6, 5.1 и 5.2 подвергают все стеклорезы (резцы); на соответствие требованиям пп. 1.2, 2.8 и 2.10-10% от партии, но не менее 5 шт. стеклорезов (резцов), на соответствие требованиям пп. 2.5 и 2.6-50% от партии, но не менее 10 рез-

цов.

Партия должна состоять из стеклорезов (резцов) одного типоразмера, одновременно предъявленных к приемке по одному документу.

3.3. При неудовлетворительных результатах выборочного приемочного контроля проводят повторный контроль на удвоенном

количестве стеклорезов (резцов).

Результаты повторного контроля являются окончательными и

распространяются на всю партию.

3.4. Периодическим испытаниям на соответствие требованиям п. 2.11 подвергают не менее 5 стеклорезов (резцов) не реже одного раза в три года.

Допускается проводить испытания у потребителя в производ-

ственных условиях.

4. МЕТОДЫ КОНТРОЛЯ

4.1. Размеры стеклорезов (резцов) (пп. 1.2—1.4) контролируют с помощью универсальных и специальных средств измерения.

4.2. Форму и размеры обработанной части алмаза, а также требования пп. 2.3, 2.5, 2.6, 2.10 контролируют на инструментальном микроскопе при увеличении 30*.

4.3. Шероховатость рабочей части алмаза контролируют визу-

ально под микроскопом сравнения по контрольным образцам.

4.4. Шероховатость поверхности деталей стеклореза контролируют невооруженным глазом сравнением с контрольным образцом.

4.5. Требования пп. 2.8, 5.1 и 5.2 контролируют визуально не-

вооруженным глазом.

4.6. Испытание стеклорезов (резцов) на работоспособность проводят резкой листового стекла толщиной 3—5 мм. Длина реза — 500 мм, количество резцов — не менее трех.

После испытаний стекло должно ломаться по линии среза.

5. МАРКИРОВКА, УПАКОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. На молоточке каждого стеклореза должны быть четко нанесены:

товарный знак предприятия-изготовителя;

розничная цена в рублях.

Для экспорта наносят сведения согласно заказу-наряду внешнеторговой организации.

5.2. На поверхности державки каждого резца, предназначенного для самостоятельной поставки, должны быть четко нанесены: товарный знак предприятия-изготовителя;

исходная масса алмаза в каратах.

5.3. Қаждый стеклорез (резец) сопровождают документом, в котором должны быть указаны:

наименование и товарный знак предприятия-изготовителя; наименование и условное обозначение инструмента;

исходная масса алмаза в каратах;

розничная цена в рублях и артикул*;

гарантийные обязательства*;

дата изготовления;

штамп технического контроля предприятия-изготовителя;

указания по эксплуатации* (по рекомендуемому приложению).

5.4. На поверхности потребительской тары должны быть четко нанесены:

товарный знак предприятия-изготовителя;

наименование инструмента.

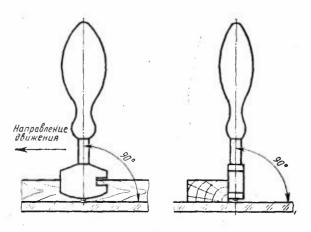
5.5. Остальные требования к упаковке, транспортированию и хранению стеклорезов и резцов — по ГОСТ 18088—83.

^{*} Указываются только для стеклорезов.

Для экспорта — в соответствии с требованиями заказа-наряда внешнеторговой организации.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

6.1. Гарантийный срок эксплуатации—1 год со дня продажи стеклорезов через розничную торговую сеть.


ПРИЛОЖЕНИЕ Рекомендуемое

Указания по эксплуатации алмазных стеклорезов

- 1. Стеклорезами должны пользоваться квалифицированные резчики стекла.
- 2. Стеклорезы, оснащенные резцами с рабочей частью в виде четырехгранной пирамиды, обеспечивают резку листового стекла толщиной до 7 мм при использовании в резцах природного алмаза и до 5 мм синтетического.

Стеклорезы, оснащенные резцами с криволинейной режущей кромкой, следует применять для резки листового стекла толщиной не более 4 мм.

- 3. Для качественной резки стекла и длительной работы стеклореза необходимо соблюдать следующие требования:
- а) резать стекло только по чистому месту, матовое и рифленое стекло по гладкой поверхности; стекло должно быть сухим;
 - б) проводить резку стекла с помощью линейки толщиной 8—10 мм;
- в) стеклорез при резке устанавливать вертикально или с незначительным наклоном к плоскости стекла (см. рисунок), усилие резки должно быть небольшим (примерно, как на карандаш);

- г) наклон стеклореза к плоскости стекла определять путем пробных резов.
- 4. При правильной установке стеклореза и соответствующем на него нажиме в месте надреза должен оставаться ровный след на стекле в виде тонкой линии.
- 5. После получения тонкой линии надреза стекло надламывают; узкие полосы стекла (5—10 мм) надламывают с помощью паза на молоточке.
- Для более легкого надламывания предварительно постукивают стекло молоточком стеклореза с противоположной стороны надреза до получения начальной трещины.
- 7. При затуплении одного режущего ребра стеклореза типа 1 в работу вводят следующее острое ребро. Для этого ослабляют стопорный винт, вынимают из молоточка резец, поворачивают его на 90°, вставляют на прежнее место так, чтобы кристалл алмаза выступал из корпуса молоточка на 1—3 мм и закрепляют стопорный винт.
 - 8. Во избежание преждевременной порчи стеклореза:
- а) в конце надреза (3—5 мм) уменьшают усилие нажима на стеклорез, чтобы не допустить резкого схода его со стекла и повреждения режущего ребра о кромку стекла или о твердый предмет, на котором оно лежит;
- б) не допускается повторно резать стекло по одной и той же линии, подвергать алмаз стеклореза ударам и хранить стеклорез без футляра.

Редактор А. Л. Владимиров Технический редактор М. И. Максимова Корректор М. С. Кабашова

Сдано в наб. 16.12.85 Подп. в печ. 06.02.86 0,75 усл. в. л. 0,75 усл. кр.-отт. 0,52 уч.-изд. л. Тир. 12 000 Цена $3\,$ коп.

Величина

			чежд унар одн	
0 C H O B H	ЫЕ ЕДИ	ниць	I C N	-
Длина	метр		m	M
Macca	килограмм		kg	ĸr
Время	секунда		S	c
Сила электрического тока	ампер		A	A
Термодинамическая температура	1 ' 1		K	к
Количество вещества	кельвин		mol	моль
	моль		cd	
Сила света	кандела		ca	кд
дополнит	ЕЛЬНЫЕ	ЕДИ	ницы	CH
Плоский угол	радиа	н	rad	рад
Телесный угол	стеради	ан	sr	ср
ПРОИЗВОДНЫЕ ЕДИНИЦЫ СИ, І		СПЕЦИА _{Единица}	ЛЬНЫЕ	
Величина			начение	Выражение через основные и до-
DC114 14HB	Наименова- име	междуна.		полнительные
	HME	родное	русское	единицы СИ
Частота	герц		Гц	с-1
Частота Сила		родное	_	
	герц	родное Hz	Гц	c-1
Сила	герц ньютон	родное Hz N	Гц Н	с-: м·кг·с-2
Сила Давление	герц ньютон паскаль	Родное Hz N Pa	Гц Н Па	C-1 M·KF·C-2 M-1·KF·C-2
Сила Давление Энергия	герц ньютон паскаль джоуль	Родное Hz N Pa J	Гц Н Па Дж	C-1 M·KF·C-2 M-1 · KF·C-2 M ² · KF·C-2
Сила Давление Энергия Мощность	герц ньютон паскаль джоуль ватт	Родное Hz N Ра J	Гц Н Па Дж Вт	C-1 M·KF·C-2 M-1·KF·C-2 M2·KF·C-2 M2·KF·C-3
Сила Давление Энергия Мощность Количество электричества	герц ньютон паскаль джоуль ватт кулон	Hz N Pa J W C	Fц Н Па Дж Вт Кл	C-1 M·KF·C-2 M-1·KF·C-2 M2·KF·C-2 M2·KF·C-3 C·A
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение	герц ньютон паскаль джоуль ватт кулон вольт	Hz N Pa J W C V F	Гц Н Па Дж Вт Кл	C-1 M·KF·C-2 M-1·KF·C-2 M²·KF·C-2 M²·KF·C-3 C·A M²·KF·C-3·A-1 M-²·KF-1·C-4·A2
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость	герц ньютон паскаль джоуль ватт кулон вольт фарад	Hz N Pa J W C V F	Гц Н Па Дж Вт Кл В Ф	C-1 M·KF·C-2 M-1·KF·C-2 M²·KF·C-2 M²·KF·C-3 C·A M²·KF·C-3·A-1 M-²·KF-1·C-4·A2
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическое сопротивление	герц ньютон паскаль джоуль ватт кулон вольт фарад ом	Hz N Pa J W C V F	Гц Н Па Дж Вт Кл В Ф	C-1 M·KF·C-2 M-1 · KF·C-2 M ² · KF·C-2 M ² · KF·C-3 C·A M ² · KF·C-3 · A-1 M ² · KF-1 · C ⁴ · A ² M ² · KF·C-4 · A-2
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическое сопротивление Электрическая проводимость	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс	Hz N Pa J W C V F	Гц Н Па Дж Вт Кл В Ф Ом См	C-1 M·KF·C-2 M-1 · KF·C-2 M ² · KF·C-2 M ² · KF·C-3 C·A M ² · KF·C-3 · A-1 M ² · KF·C-4 · A ² M ² · KF·C-4 · A ² M ² · KF·C-4 · A ²
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер	Hz N Pa J W C V F	Гц Н Па Дж Вт Кл В Ф Ом См В6	C-1 M·KF·C-2 M-1 · KF·C-2 M-2 · KF·C-2 M-2 · KF·C-3 C·A M-2 · KF·C-3 · A-1 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-1 KF·C-2 · A-1
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции Магнитная индукция	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер тесла	Hz N Pa J W C V F S Wb	Гц Н Па Дж Вт Кл В Ф Ом См Вб	C-1 M·KF·C-2 M-1 · KF·C-2 M-2 · KF·C-2 M-2 · KF·C-3 C·A M-2 · KF·C-3 · A-1 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-1 KF·C-2 · A-1
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции Магнитная индукция Индуктивность Световой поток Освещенность	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер тесла генри	Hz N Pa J W C V F S Wb T	Гц Н Па Дж Вт Кл В Ф Ом См Вб Тл	C-1 M·KF·C-2 M-1 · KF·C-2 M2 · KF·C-3 C·A M2 · KF·C-3 · A-1 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-1 M2 · KF·C-4 · A-1 KF·C-2 · A-1 M2 · KF·C-4 · A-2 KF·C-4 · A-2
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции Магнитная индукция Индуктивность Световой поток	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер тесла генри люмен	Hz N Pa J W C V F S Wb T H	Гц Н Па Дж Вт Кл В Ф Ом См Вб Тл Гн	C-1 M·KF·C-2 M-1 · KF·C-2 M2 · KF·C-3 C·A M2 · KF·C-3 · A-1 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-1 M3 · KF·C-4 · A-1 KF·C-2 · A-1 M4 · KF·C-4 · A-2 KG·CP
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции Магнитная индукция Индуктивность Световой поток Освещенность	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер тесла генри люмен	Hz N Pa J W C V F S Wb T H Im	Гц Н Па Дж Вт Кл В Ф Ом См Вб Тл Гн	C-1 M·KF·C-2 M-1 · KF·C-2 M2 · KF·C-3 C·A M2 · KF·C-3 · A-1 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-2 M2 · KF·C-4 · A-1 M2 · KF·C-4 · A-1 KF·C-2 · A-1 M2 · KF·C-4 · A-2 KF·C-4 · A-2
Сила Давление Энергия Мощность Количество электричества Электрическое напряжение Электрическая емкость Электрическая проводимость Поток магнитной индукции Магнитная индукция Индуктивность Световой поток Освещенность Активность радионуклида	герц ньютон паскаль джоуль ватт кулон вольт фарад ом сименс вебер тесла генри люмен люкс беккерель	Hz N Pa J W C V F S Wb T H Im Ix Bq	Гц Н Па Дж Вт Кл В Ф Ом См В6 Тл Гн	C-1 M·KF·C-2 M-1 · KF·C-2 M-2 · KF·C-3 C·A M-2 · KF·C-3 · A-1 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-2 M-2 · KF·C-4 · A-1 KF·C-2 · A-1 M-2 · KF·C-4 · A-2 KF·C-2 · A-1 M-2 · KF·C-4 · A-2 KF·C-2 · A-1 KF·C-2 · A-1 C-1

Наименование

Единица

Обозначение

русское