

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КАЛИБРЫ ПРЕДЕЛЬНЫЕ ДЛЯ ИЗДЕЛИЙ ИЗ ДРЕВЕСИНЫ И ДРЕВЕСНЫХ МАТЕРИАЛОВ

допуски

FOCT 14025-84

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москра

РАЗРАБОТАН Министерством лесний, целлюлозно-бумажной и деревообрабатывающей промышленнусти СССР

ИСПОЛНИТЕЛИ

В. А. Бардонов, В. С. Серебряков, С. Г. Заверюха

ВНЕСЕН Министерством лесной, цеплюлозно-бумажной и деревообрабатывающей промышленності СССР

Зам. министра В. М. Венцлавский

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИ! Постановлением Государственного комитета СССР по стандартам от 14 декабря 1984 г. № 4430

Редактор А. Л. Владимиров Технический редактор Г. А. Макарова Корректор И. Л. Асауленко

Сдано в наб. 14.01.85 Подп. в печ. 11.03.85 1.25 усл. п. л. 1,25 усл. кр.-отт. 0,90 уч.-изд. л. Тир. 20000 Цена 5 коп.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

КАЛИБРЫ ПРЕДЕЛЬНЫЕ ДЛЯ ИЗДЕЛИЙ ИЗ ДРЕВЕСИНЫ И ДРЕВЕСНЫХ МАТЕРИАЛОВ Допуски

ГОСТ 14025—84

Limit

gauges in woodworking. Tolerances

Взамен ГОСТ 14025—80

OKII 39 3100

Постановлением Государственного комитета СССР по стандартам от 14 декабря 1984 г. № 4430 срок введения установлен

c 01.01.86

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на предельные гладкие калибры для контроля линейных размеров деталей и сборочных единиц из древесины и древесных материалов, предназначенные для контроля отверстий и валов с номинальными размерами до 3150 мм и с допусками от 10 до 18-го квалитета по ГОСТ 6449.1—82, а также глубин и высот уступов с номинальными размерами до 120 мм и с допусками от 13 до 17-го квалитета по ГОСТ 6449.1—82.

Для контроля размеров с допусками, отличающимися от установленных ГОСТ 6449.1—82, рекомендуется применять калибры по настоящему стандарту, соответствующие ближайшему меньшему допуску по ГОСТ 6449.1—82.

1. ОБОЗНАЧЕНИЯ

1.1. В настоящем стандарте приняты следующие обозначения размеров изделия и сторон калибра:

— номинальный размер изделия;

 D_{\max} — наибольший предельный размер изделия;

 D_{\min} — наименьший предельный размер изделия;

IT - — поле допуска изделия;

ПР — проходная сторона калибра;

ПР_{тах}, ПР_{тіп} — соответственно наибольший и наименьший предельные размеры стороны ПР нового калибра;

ПР_{изн} — наибольший предельный размер стороны ПР изношенного калибра;

НЕ — непроходная сторона калибра;

HE_{max}, HE_{min} — соответственно наибольший и наименьший предельные размеры стороны НЕ калибра;

 Б — большая сторона калибра для контроля глубин и высот уступов, соответствующая наибольшему предельному размеру изделия;

 ${\bf E}_{\max}$, ${\bf E}_{\min}$ — соответственно наибольший и наименьший предельные размеры стороны ${\bf E}$ калибра;

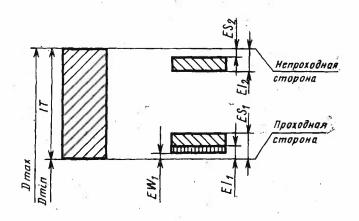
 $B_{\text{изн}}$ — предельный размер изношенной стороны B калибра;

 М — меньшая сторона калибра для контроля глубин и высот уступов, соответствующая наименьшему предельному размеру изделия;

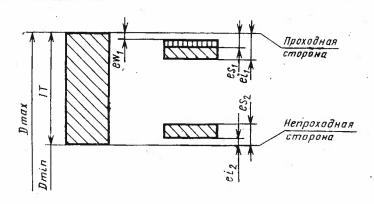
 M_{\max} , M_{\min} — соответственно наибольший и наименьший предельные размеры стороны M калибра;

М_{изн} — предельный размер изношенной стороны М калибра;

ES₁, EI₁ — соответственно верхнее и нижнее предельные отклонения размеров проходных сторон калибров для контроля отверстий;


 ES_2 , EI_2 — соответственно верхнее и нижнее предельные отклонения размеров непроходных сторон калибров для контроля отверстий;

es₁, ei₁ — соответственно верхнее и нижнее предельные отклонения размеров проходных сторон калибров для контроля валов;


- es₂, ei₂ соответственно верхнее и нижнее предельные отклонения размеров непроходных сторон калибров для контроля валов;
- es₃, ei₃ соответственно верхнее и нижнее предельные отклонения размеров стороны Б калибров для контроля высот и уступов;
- es₄, ei₄ соответственно верхнее и нижнее предельные отклонения размеров стороны М калибров для контроля высот и уступов;
- EW₁, ew₁ предельные отклонения износа калибров для контроля соответственно отверстий и валов;
 - еw₃, ew₄ предельные отклонения износа калибров для контроля глубин и высот уступов для сторон, соответственно. Б и М.

2. ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ КАЛИБРОВ ДЛЯ КОНТРОЛЯ ОТВЕРСТИЙ И ВАЛОВ

2.1. Расположение полей допусков размеров калибров для контроля отверстий указано на черт. 1, для контроля валов — на черт. 2.

Черт. 1

Черт. 2

- 2.2. Размеры калибров должны определяться по формулам, указанным в табл. 1.
- 2.3. Верхнее и нижнее предельные отклонения полей допусков калибров и предельные отклонения износа калибров для контроля отверстий должны соответствовать указанным в табл. 2, для контроля валов в табл. 3.

Таблица 1

Обозначе	ния	Формулы для р	асчета калибров
сторон калибров	размеров	для отверстий	ддя валов
a to a	ПРтах	D _{min} +ES ₁	D _{max} +es ₁
ПР	ПР min	D _{min} +EI ₁	D _{max} +ei ₁
	ПР изн	$D_{\min} + EW_1$	$D_{\max} + ew_1$
	HE max	D _{max} +ES ₂	$D_{\min} + es_2$
HE	HE min	D _{max} +EI ₂	D _{min} +ei ₂

3. ПРЕДЕЛЬНЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ КАЛИБРОВ ДЛЯ КОНТРОЛЯ ГЛУБИН И ВЫСОТ УСТУПОВ

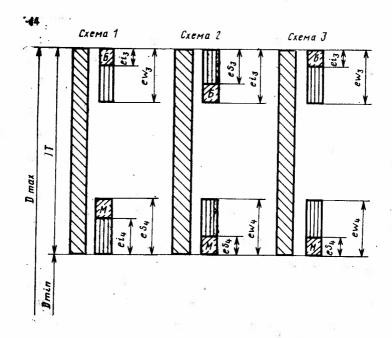

3.1. Схемы расположения полей допусков калибров для контроля глубин и высот уступов указаны на черт. 3:

схема 1 — размеры сторон Б и М при износе уменьшаются;

схема 2 — размеры сторон Б и М при износе увеличиваются;

схема 3 — размер стороны Б при износе уменьшается, а М — увеличивается

- 3.2. Размеры калибров должны определяться по формулам, указанным в табл. 4.
- 3.3. Верхние и нижние предельные отклонения полей допусков калибров и предельные отклонения износа калибров для контроля глубин и высот уступов должны соответствовать указанным в табл. 5.

Черт. 3

Предельные отклонения

										TAT TAT	
.2,								Предель	ные отк	лонения	
Квалитет допу ка изделия	Обозначение отклонения	До 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 30	Св. 30 до 50	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	

Проходная

	1	,	t .						. ,	. 1
	ES ₁									
10	_EI1									
	EW ₁									
	ES ₁						_	+0,03	+0,04	+0,04
11	EI,				_			+0,02	+0,02	+0,02
	EW ₁							0	0	0
	ES ₁	+0,02	+0,02	+0,02	+0,02	+0,02	<u>+0,03</u>	+0,03	+0,04	+0,04
12	EI ₁	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+0,02	+0,02	+0,02
	EW ₁	0	0	0 -	0	0	0	0	0	0
	ES ₁	+0,02	+0,03	+0,04	40,04	+0,05	+0,06	<u>+0,0</u> 6	+0,07	+0,08
13	EI ₁	+0,01	+0,02	+0,02	+0,02	+0,03	+0,03	+0,03	+0,03	+0,04
	EW ₁	0	0	0	0	0	0	0	0	0
	ES ₁	+0,02	+0,03	<u>+0,04</u>	+0,04	+0,05	+0,06	+0.06	+0,07	+0,08
14	EI ₁	+0,01	+0,02	+0,02	+0,02	+0,03	+0,03	+0,03	+0,03	+0,04
	EW ₁	0	0	0	0	0	0	0	0	0
31	ES ₁	+0,04	+0,05	+0,05	+0,07	+0,08	+0,09	+0,10	+0,12	+0,13
15	EI ₁	+0,03	+0,04	+0,04	+0,05	+0,08	+0,0 6	+0,07	+0,08	+0,09
	EW_1	0	0	0	0	0	0	0	0	0
4										1 4

Таблица 2 размеров калибров для контроля отверстий

ддя инт	ервалов	размер	ОВ								,
Св. 180 до 250	Св. 250 до 315	Св. 315 до	Св. 400 до 500	Св. 500 до 630	Св. 630 до 800	Св. 800 до	Св. 31000 до 1250	Св., 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150
ст	орона	a									
								+0,08	+0,10	+0,11	+0,
					-			+0,05	+0,06	+0,07	+0,0
_								+0,04	+0,05	+0,05	+0,0
+0.05	+0,05	<u>+0,06</u>	<u>+0,07</u>	+0,09	+0,10	+0,11	+0,13	+0,14	<u>+0,17</u>	+0,19	+0,
+0,03	+0,03	+0,03	+0,04	<u>+0,0</u> 6	<u>+0,0</u> 6	+0,07	+0,08	+0,09	+0,10	+0,11	+0,
+0,01	+0,01	± 0.01	+0,02	<u>+0,03</u>	+0,04	+0,04	+0,05	<u>+0,06</u>	+0,07	+0,08	+0,0
+0.05	+0,,03	<u>+0,08</u>	<u>+0,08</u>	+0,10	<u>+0,12</u>	<u>+0,13</u>	+0,15	<u>+0,17</u>	+0,20	+0,23	+0,
+0,03	<u>+0,04</u>	<u>+0,05</u>	<u>+0,05</u>	+0,07	<u>+0,08</u>	+0,09	+0,1C	+0,11	+C,13	+0.15	+0,1
+0,01	+0,02	+0,03	<u>+0,03</u>	<u>+0,04</u>	<u>+0,05</u>	<u>+0,06</u>	+0,07	+0,08	<u>+0,09</u>	+0,11	+0,
+0,10	+0,11	<u>+0,13</u>	+0,14	+0,18	+0,20	+0,22	<u>+0,25</u>	+0,28	<u>+0,33</u>	+0,38	+0,4
+0,05	<u>+0,0</u> 3	<u>+0,07</u>	<u>+0,08</u>	+0,11	<u>+0,12</u>	+0,13	+0,15	<u>+0,15</u>	<u>+0,18</u>	+0,20	+0,2
+0,02	+0,03	<u>+0,04</u>	<u>+0,05</u>	<u>+0,07</u>	<u>+0,08</u>	<u>+0,0</u> 9	<u>+0,10</u>	+0,12	<u>+0,15</u>	+0,17	+0,1

+0.12 +0.13 +0.16 +0.17 +0.22 +0.24 +0.27 +0.31 +0.36 +0.41 +0.48 +0.55 +0.07 +0.08 +0.10 +0.11 +0.15 +0.16 +0.18 +0.21 +0.23 +0.26 +0.30 +0.34

+0.15 -0.16 +0.18 +0.21 +0.29 +0.31 +0.33 +0.37 +0.40 +0.46 +0.53 +0.60 +0.07 +0.03 +0.11 +0.14 +0.18 +0.20 +0.22 +0.26 +0.30 +0.37 +0.45 +0.53

رن		W			90			Предель	ные отк	лонения	
Квалитет допус ка изделия	Обозначение отклонения	До 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до ?0	Св. 30 до 50	Св. 50 до 80	Св. 80 до 12	Св. 120 до	

Проходная

16,	_ES ₁	+0,04	+0,05	+0,06	+0,07	+0,08	+0,09	+0,10	+0,12	+0,13	
17,	EI,	+0,03	+0,04	+0,04	+0,0 5	+0,0 6	- 10,06	+0,07	+0,08	+0,09	
18	EW ₁	0	0	0	0	0	0	0	0	0	

Непроходная

	i	1	,	,	1	1	1	1	,	
10	ES ₂	<u> </u>								
	EI2		i			<u></u>				
11	ES ₂			915		- 17		+0,01	+0,01	+0,01
11	EI ₂							0	_0,01	_0,01
12	ES ₂	+0,01	+0,01	+0,01	+0,01	+0,01	+0,01	+0,01	+0,01	+0,01
	E1 ₂	0	0	0	0	0	0	0	0,01	_0,01
13	ES ₂	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+0,02	+0,02	+0,02
	EI ₂	0	0	-0;01	0,01	-0,01	<u>-0,01</u>	-0,01	-0,02	_0,02
14	ES ₂	+ 0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+0,02	+0,02	+0,02
1.4	El2	0	·c	_0,01	_0,01	_0,01	-0,01	-0,01	_0,02	-0,02
. 15	ES ₂	+0,01	+0,01	+0,01	+0,01	+0,01	± 0.02	+0,02	+0,02	+0,02
13	El ₂	0	0	_0,01	_0,01	<u>_0,01</u>	-0,01	-0,01	_0,02	_0,02
16,	E.S.,	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+C,02	<u>+0,02</u>	+0,02
17, 18,	Eta	0	0	-0,01	-0,01	_ c ,01	-0,01	-0,01	- 0,02	-0,02
		, , ,				1	: 1	ŧ	- 1	- 1

Продолжение табл. 2

 для инт	ервадов	размер	ЭВ						176		
Св. 180 до 250	Св. 250 до 315	Св. 315 до	Св. 400 до 500	Св. 500 до .	Св. 630 до 800	Св. 800 до 1000	Св. 1000 до 1250	Св. 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150

сторона

сторона

									-			
									-0,02	-0,02	-0,03	-0.04
	ilic								<u>-0,0</u> 5	<u>-0,0</u> 3	<u>-0,07</u>	<u>-0,09</u>
		0	0	<u>-0,01</u>	_0,02	_0,02	-0,02	<u>-0,0</u> 2	-0,02	<u>-0,03</u>	_0,04	-0,05
	-0.02	-0,02	_0,03	0,04	<u>0,05</u>	<u>-0,0</u> 6	<u>-0,06</u>	<u>-0,07</u>	<u>_0,08</u>	<u>_0, 10</u>	-0,12	-0,14
	0	<u>_0,01</u>	-0,01	_0,02	<u>-0,03</u>	_0,03	_0,03	-0,04	<u>-0,05</u>	<u>_0,c</u> 6	-0,07	-0,08
	-0,02	<u>-0,03</u>	_0,04	<u>-0,05</u>	_0,0 3	_0,07	<u>-0,07</u>	<u>-0,0</u> 3	_0,11	<u>_0,13</u>	<u>-0,15</u>	0,17
1	0	_0,01	<u>_0,01</u>	_0,02	-0,03	<u>-0,04</u>	<u>0,04</u>	<u>-0,05</u>	-0,05	<u>-0,07</u>	<u>-0,0</u> 9	-0,10
	_0,0 5	<u>0,03</u>	<u>_0,07</u>	-0,08	0,10	-0,12	-0,13	-0,15	<u>0,18</u>	_0,22	_0,27	-0,31
	-0,02	- 0,03	<u>_0,0</u> +	-0,0 3	_0,07	<u>_0,08</u>	<u>-0,0</u>	-0,12	0,13	-0,15	<u>-0,19</u>	-0,22
	-0,07	_0,08	_0,10	<u>_0,12</u>	-0,14	<u>- 0, 1</u> 6	<u>-0, 18</u>	-0,22	-0,26	<u>_0,30</u>	0,37	<u>-0,43</u>
	-0,04	-0,06	<u>-0,08</u>	<u>-0,11</u>	-0,14	-0,16	-0,17	<u>-0,21</u>	-0,23	0,29	0,36	-0,42
	-0 ,0 9	<u>-0,11</u>	-0,14	<u>-0,17</u>	_0,21	<u>-0,2</u> +	<u>_0,2</u> 6	-0,31	<u>-0,3</u> 6	<u>-0,44</u>	-0,54	0,63
	_0,08	0 11	0,15	0,19	_0,24	_0,26	-0,31	<u>-0,</u> 37	_0,43	<u>_0,5</u> 2	<u>_0,01</u>	0,74
	-0 ,13	G 16	0,21	-0,2 5	—C,31	-C,34	C,40	-0,47	0,5%	-0,6.	-0,7	-0,95
•		,					•	,				

Предельные откложения размеров

MM

ن						Предел	ные от	клонения
Квантет до пу на предедения пред	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 30	Св. 30 до 50	Св. 50 до 80	Св. 80 до 12	Св. 120 до 180

Проходная

	_es ₁			_		_				
10	_ei ₁			_	_					
	ew ₁			_	_					
	es ₁							-0,02	_0,02	-0,02
_ 11	_ei ₁					_		_0,C3	_0,04	_0,04
500	_ew _t							0	0	0
	_es ₁	-0,01	-0,01	0,01	-0,01	-0,01	-0,02	_0,02	-0,02	-0,02
12	ei ₁	-0,02	-0,02	-0,02	_0,02	-0,02	_0,03	_0,03	0,04	_0,04
	_ew _i	0	0	0	0	0	С	0	0	0
	es ₁	-0,01	-0,02	-0,02	-0,02	-0,03	-0,03	-0,03	_0,03	-0,04
13	_ei ₁	-0,02	<u>-0,03</u>	-0,04	<u>-0,04</u>	<u>-0,65</u>	-0,06	_0,0 6	-0,07	_0,08
	_ew ₁	0	_0	0	0	0	0	0	0.	0
	_es ₁	-0.01	<u>-0,02</u>	-0,02	-0,02	-0,03	_0,03	-0,03	0,03	-0,04
14	ėi,	-0,02	_0,C3	<u>-0,04</u>	-0,04	-0,05	-0,06	<u>-0,06</u>	<u>-0.07</u>	-0,08
	·ew ₁	0	0	0	0	0	0	0	0	0
	_es ₁	-0,03	-0,04	<u>-0,04</u>	-0,05	<u>0,0</u> 6	<u>-0,0</u> 5	-0,07	_0,08	0,09
15	_ei ₁	-0.04	0,05	-0,0 6	<u>-0,07</u>	-0,08	0,09	-0,10	-0,12	0,13
	ew ₁	С	0	0	0	0	0	0	. 0	С
,			,	•		•	•		•	

Таблица 3

калибров для контроля валов

							ДО	до	до	до	Ao
180 до	250 до	315 до	400 до	500 до	630 до	800 до	т 000	250 д	1600 д	2000	2500
Cs. 1	CB. 2 315	CB. 3	CB. 4	CB. 5	Ca. 6 800	CB. 8	Cs. ,1000 1250	CB4 1250 1600	CB. 1	Ca. 2	2
стор	она										·
								-0,05	0,0 6	_0,06	-
		10 [±]						-0,0 9	-0,11	_0,12	-9
								-0,04	<u>-0,05</u>	_0,05	-
-0,03	-0,03	<u>-0,03</u>	-0 ,04	<u>_0,06</u>	-0,0 3	-0,07	_0,C8	<u>-0,09</u>	<u>-0,10</u>	-0,11	=
_0,0 5	-0,05	0,0 6	-0,07	-0,0 9	-0,10	-0,11	<u>-0,13</u>	-0,14	<u>-0,17</u>	-0,19	=
<u>-0,01</u>	-0,01	-0,01	-0,02	-0,03	-0,04	<u>-0,04</u>	<u>-0,05</u>	<u>0,0</u> 6	-0,07	-0,08	=
-0,03	<u>-0,04</u>	<u>0,05</u>	0,05	_0,07	-0,08	<u>-0,03</u>	-0,10	_C,11	<u>-0,13</u>	-0,15	=
-0,05	-0,06	0,08	<u>-0,08</u>	_0,10	-0,12	<u>-0,13</u>	<u>-0,15</u>	<u>-0,17</u>	-0,20	-0.23	=
-0,01	-0,02	0,03	-0,03	-0,04	-0,05	<u>-0,06</u>	$\frac{-0.07}{1.00}$	-0,08	<u>-0,09</u>	<u>-0,11</u>	=
-0,05	<u>-0,06</u>	-0,07	<u>-0,08</u>	-0,11	-0,12		J——			*	_
-0,10	<u>-0,11</u>	-0,13			-0,20				110		1
<u>-0,02</u>	0,03	-0.04				<u>-0,09</u>		-0,12		-0,17	
-0,07	-0,08	-0,10					-0,21				
-0,12	0,13			-0,22				<u>-0,36</u>	0,41		
-0,04	0,05	<u>-0,07</u>		-0,11					<u>-0,23</u>		
.5.	-0,16				<u>-0,31</u>					-0,53	
-0,20	$\frac{-0,21}{}$	$\frac{-0,24}{}$	$\frac{-0,27}{}$	-0,36	-0.3 9	-0,42	-0,4/	<u>-0,53</u>	-0,61	$\frac{0,71}{}$	- 0

		70.							85 86		
<u>ئ</u>								Предел	њ име от	клонения	ī
Квалитет допус- ка изделия	Обозначение •тклонения	До 3	Св. 3 до 6	Св. 6 до 10	Св. 10 до 18	Св. 18 до 30	Св. 30 до 50	Св. 50 до 80	Св. 80 до 120	Св. 120 до 180	
	(2					4		_ n	l p o x o	дная	
16,	es ₁	-0,03	_0,04	_0,04	_0,05	0,0	0,06	_0,0	_0,08	_0,C9	
17,	ei ₃	-0,04	-0,05	0,0	-0,07	_0,08	0,09	0,10	0,12	-0,13	
18	ewi	0	0	0	0	0	0	0	0	0	
			,		•	•	92	He	прохо	'、 > Д Н А Я	•
10	es ₂	8						_=			
	el ₂	_=			_6.95						
11	es ₂							0	+0,01	+0,01	
	_ei ₂							-0,01	-0,01	-0,01	
12	es ₂	0	0	0	0	0	0	0	+0,01	+0,01	
	_ei ₂	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	-0,01	
13	es ₂	0	0	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+0,02	
-10	ei ₂	-0,01	-0,01	-0,01	-0,01	_0,01	-0,02	_0,02	-0 ,02	-0,02	
14	eS ₂	0	0	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	+0,02	
	eig	-0,01	-0,01	-0,01	0,01	-0,01	-0,02	_0.02	-0,02	0,02	
15	es ₂	0	0	+0,01	+0,01	+0,01	+0,01	+0,01	+0,02	4-0,02	
	eig .	-0,01	-0,01	<u>-0,01</u>	-0,01	-0,01	-0,02	<u>-0,02</u>	<u>-0,02</u>	_0,02	
16, 17, 18	es ₂	0	0	+0,01	+0,01	+0,C1	+0,01	+0,01	+0,02	+0,02	
18	ei:	-0,01	0,01	-0,01	-0,01	-0,01	-0,02	-0,02	-0,02	-0,02	

Продолжение табл. 3

MM											
для янтервалов размеров											
Св. 190 до 250	Св. 250 до 315	Св. 315 до 400	Св. 400 до. 500	Св. 500 до 630	Св. 630 до 800	Св. 800 до 1000	Св. 1000 до 1250	Св. 1250 до 1600	Св. 1600 до 2000	Св. 2000 до 2500	Св. 2500 до 3150
стор	она	32 -							135		
_0,18	-0,21	-0,25	_0,29	_0,39	_0,41	_0,47	<u>0,53</u>	_0,60	_0,69	-0,78	_0,92
_0,23	_0,2 6	_0,31	_0 ,35	-0,46	-0,49	_0,56	0,63	_0,73	_0,84	<u>-0,96</u>	<u>—1,13</u>
-0,11	-0,14	-0,18	-0,22	-0,28	0,30	-0,36	-0,42	-0,50	-0,60	o´,70	_0,85
стор	она	•					•			•	•
	<u> </u>							<u>+0,0</u> 6	+0,07	+0,08	+0,10
								+0,02	+0 02	+0,02	+0,03
+0,02	+0,02	+0,03	+0,04	+0,05	+C,06	+0,06	+0,07	+0,08	+0,10	+0,12	+0,14
0	0	0	+0,01	+0,02	+0,02	+0,02	+0,02	+0,02	+0,03	+0,04	+0,05
+0,02	+0,C3	+0,04	+0,05	+0,06	+0,07	+0,07	+0,09	+0,11	+0,13	<u>+0,15</u>	+0,17
0	+0,01	+0,01	+0,02	+0,03	+0,03	+0,03	+0,04	+0,05	<u>+0,0</u> 6	<u>+0,07</u>	+0,08
+0,05	<u>+0,06</u>	+0,07	+0,08	+0,10	+0,12	+0,13	+0,15	+0,18	+0,22	+0,27	+0,31
0	+0,01	+0,01	+0,02	+0,03	+0,04	+0,04	<u>+0,05</u>	+0,05	+0,07	+0,09	+0,10
+0,07	<u>+0,08</u>	+0,10	+0,12	+0,14	+0,16	<u>+0,18</u>	<u>+0,22</u>	+0,26	+0,30	+0,37	+0,43
+0,02	<u>+0,03</u>	+0,04	<u>+0,0</u> 6	+0,07	+0,08	+0,09	+0.12	+0,13	+0,15	+0,19	+0,22
+0,09	+0,11	+0,14	+0,17	+0,21	+0,24	+0,26	+0,31	+0,36	+0,44	+0,54	+0,63
+0,04	+0,0 6	+0,08	+0,11	+0,14	<u>+0,16</u>	+0,17	+0,21	+0,23	+0,29	+0,36	+0,42
+0,13	+0,16	+0,21	+0,25	+0,31	+0,34	+0,40	+0,47	+0,5 6	+0,67	+0,79	+0,95
+0,08	+0,11	+0,15	+0,19	+0,24	+0,2 6	+0,31	+0,37	+0,43	+ 0,52	+0,61	+0,74
1	•	=	. '					60			

Таблица 4

Обознач	300			
сторон калибров	размеров	Формулы для расчета калибров		
	Б _{тах}	$D_{\max} + es_3$		
Б .	E min	D _{max} +ei ₃		
	Бизн	$D_{\max} + \mathrm{ew}_3$		
	Mmax	D _{min} +es ₄		
м —	M _{min}	D _{min} +ei ₄		
	Мизн	$D_{\min} + ew_4$		

	·	1			п	007071	MM	monug z	ля интернад			1.0	
ж ж	:=0, = 2		до 3			в. З до		І	св. 6 до 1		св. 10 до 18		
Квалитет допуска изделия	Обозначение отклонения	Схема 1	Схема 2	Схема 3	Cxema 1	Cxema 2	Схема 3	Cxema 1	Схема 2	Схема 3	Czena i	Czewa 2	Схема 3
					Сто	рона	кал	нбра	Б				. Ma
1	es ₃	0	-0,01	0		0,02		0	-0,02	0	0	0,02	0
13, 14	ei ₃	-0,01	-0,02	_C,01	-0,01	_0,03	_0,01	-0,01	-0,03	-0,01	-0,02	-0,02	-0,02
	ew ₃	-0,02	0	-0,02	-0,03	0	_0,03	-0,02	С	-0,03	-0,04	0	-0,04
15—18	es ₃	0	-0,03	0	0	-0,04	0	0	-0,04	0	0	-0,05	0
	ei ₃	-0,01	-0,04	-0,01	-0,01	−0,0 5	-0,01	-0,01	-0,05	-0,01	-0,02	-0,07	-0,02
,	ew ₃	-0,04	0	-0,04	-0,05	0	-0,05	-0,03	0	-0,03	-0,07	0	-0,07
					Сто	рона	кал	ибра	M				
12	es ₄	+0,02	+0.01	+0,01	+0,03	+0,01	+0,01	+0.03	+0,01	+0,01	+0,01	+0.02	+0,02
13, 14	ei4	+0,01	0	0	+0,02	0	0	+0,02	0	0	+0,02	0	0
Ul-E-	ew ₄	0	+0,02	+0,02	0	+0,03	+0,03	0	+0,03	+0,03	0	+0,04	+0,04
	es ₄	+0,04	+0,01	+0,01	+0,05	+0,01	+0,01	+0,06	+0,01	+0,02	+0,07	+0,02	+0,02
15-18	ei,	+0,03	0	0	+0,04	0	0	+0,05	0	0	+0,05	0	0
	ew ₄	0	+0,04	+0,04	0	+0,04	+0,04	0	+0,03	+0,06	0	+0,07	+0,07

Cīp.
6
FOCT
14025-84

							MM					7.0	
-	1	Предельные отклонения для интервадов размеров											
уска	Обозна чения отк <i>л</i> онения	св. 18. до 30			1 9	св. 30 до 50			св. 50 до	80	св. 80 до 120		
Квадитет допуска изделия		Схема 1	Схема 2	Скема 3	Схема 1	Схема 2	Схема 3	Cxema 1	Схема 2	Схемв 3	Схемв 1	Схена 2	Czewa 3
				-1-	Сто	рона	калі	ябра I	6				B
. [es ₃	0	-0,03	0	0	-0,03	0	0	-0,03	0	0	-0,04	0
13, 14	ei ₃	-0,02	_0,05	_0,02	-0,02	-0,05	_0,02	-0,03	0,06	0	_0,03	0,07	-0,03
	ew _s	_0,05	0	-0,05	_0,05	0	-0,05	-0,06	0	_0,06	_0,07	0	-0,07
15—18	es ₃	0	-0,06	. 0	0	_0,07	0	0	-0,07	0	0	0,08	0
,	ei ₃	_0,02	-0,08	-0,02	-0,02	_0,09	-0,02	-0,03	0,10	-0,03	0,03	-0,11	-0,03
1 (4)	ew ₃	-0,08	0	-0,08	-0,0 9	0	-0,09	-0,10	0	-0,10	-0,11	0	-0,11
			5		Сто	рона	кали	бра 1	М				-
13	es ₄	+0.05	+0,02	+0,02	+0,05	+0,02	+0,02	+0,06	+0,03	+0,03	+0,07	+0,03	+0,03
13, 14	ei4	+0,03	0	0	+0,03	0	. 0	+0,03	0	0	+0,04	- 0	0
	ew ₄	0	+0,05	+0,05	0	+0,05	+0,05	0	+0,05	+0,06	0	+0,07	+0,07
15—18	es ₄	+0,08	+0,02	+0,02	+0,0 9	+0,02	+0,02	+0,10	+0,03	+0,03	+0,11	+0,03	+0,03
	ei4.	+0,06	0	0	+0,07	0	0	+0,07	0	0	+0,08	0	0
	éw ₄	Ø	+0,08	+0,08	0	+0,09	+0,09	0	+0,10	+0,10	0	+0,11	+0,11

ПРИЛОЖЕНИЕ Справочное

ПРИМЕРЫ РАСЧЕТА КАЛИБРОВ

Пример 1. Рассчитать калибр для контроля размера полотна двери по ширине с полем допуска 600 h13.

Решение.

1. Находим предельные отклонения размера изделия по ГОСТ 6449.1-82 $600h13 = 600_{-1.10}$

$$D_{\text{max}} = 600,0 \text{ мм}; D_{\text{min}} = 598,9 \text{ мм}$$

2. Рассчитываем размеры сторон калибра (см. черт. 2, п. 2.2 и табл. 3 настоящего стандарта):

$$\Pi P_{\text{max}} = D_{\text{max}} + \text{es}_1 = 600,0 - 0.11 = 599,89 \text{ MM}$$
 $\Pi P_{\text{min}} = D_{\text{max}} + \text{ei}_1 = 600,0 - 0,18 = 599,82 \text{ MM}$
 $\Pi P_{\text{M3H}} = D_{\text{max}} + \text{ew}_1 = 600,0 - 0,07 = 599,93 \text{ MM}$
 $HE_{\text{max}} = D_{\text{min}} + \text{es}_2 = 588,90 + 0,10 = 589,00 \text{ MM}$
 $HE_{\text{min}} = D_{\text{min}} + \text{ei}_3 = 588,90 + 0,03 = 589,93 \text{ MM}$

Пример 2.

Рассчитать калибр для контроля размера проушин по ширине с допуска 12 Н13.

Решение.

1. Находим предельные отклонения размера изделия по ГОСТ 6449.1—82.

12 H13=
$$12^{+0.27}$$

$$D_{\max} = 12,27$$
 mm; $D_{\min} = 12,00$ mm

2. Рассчитываем размеры сторон калибра (см. черт. 1, п. 2.2 и табл. 2 настоящего стандарта).

$$\begin{split} &\Pi P_{\text{max}} \!\!=\!\! D_{\text{min}} \!\!+\! \text{ES} \!\!=\!\! 12,00 \!\!+\!\! 0,04 \!\!=\!\! 12,04 \text{ MM} \\ &\Pi P_{\text{min}} \!\!=\!\! D_{\text{min}} \!\!+\! \text{EI} \!\!=\!\! 12,00 \!\!+\!\! 0,02 \!\!=\!\! 12,02 \text{ MM} \\ &\Pi P_{\text{R3H}} = \!\! D_{\text{min}} \!\!+\! \text{EW}_1 \!\!=\!\! 12,00 \!\!+\!\! 0,00 \!\!=\!\! 12,00 \text{ MM} \\ &HE_{\text{max}} \!\!=\!\! D_{\text{max}} \!\!+\! \text{ES}_2 \!\!=\!\! 12,27 \!\!+\!\! 0,01 \!\!=\!\! 12,28 \text{ MM} \\ &HE_{\text{min}} \!\!=\!\! D_{\text{max}} \!\!+\! \text{EI}_2 \!\!=\!\! 12,27 \!\!-\!\! 0,01 \!\!=\!\! 12,26 \text{ MM} \end{split}$$

Пример 3.

Рассчитать калибр для контроля размера уступа в детали из древесины с полем допуска 20 is 13.

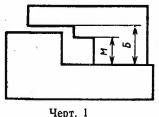
Решение.

1. Находим предельные отклонения размера изделия по ГОСТ 6449.1—82. $20i_{s}13=20.00+0.16$

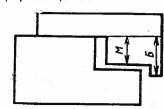
$$D_{\text{max}} = 20,16 \text{ MM}; D_{\text{min}} = 19,84 \text{ MM}$$

2. Рассчитываем размеры сторон калибра (см. черт. 3, п. 3.2 и табл. 5 настоящего стандарта).

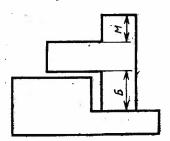
а) при расположении полей допусков по схеме 1:

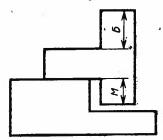

$$\begin{array}{l} \mathbf{E}_{\text{max}} = D_{\text{max}} + \mathbf{es_3} = 20,16 + 0 = 20,16 \text{ MM} \\ \mathbf{E}_{\text{min}} = D_{\text{max}} + \mathbf{ei_3} = 20,16 - 0,02 = 20,14 \text{ MM} \\ \mathbf{E}_{\text{M3H}} = D_{\text{max}} + \mathbf{ew_3} = 20,16 - 0,05 = 20,11 \text{ MM} \\ \mathbf{M}_{\text{max}} = D_{\text{min}} + \mathbf{es_4} = 19,84 + 0,05 = 19,89 \text{ MM} \\ \mathbf{M}_{\text{min}} = D_{\text{min}} + \mathbf{ei_4} = 19,84 + 0,03 = 19,87 \text{ MM} \\ \mathbf{M}_{\text{M3H}} = D_{\text{min}} + \mathbf{ew_4} = 19,84 + 0,00 = 19,84 \text{ MM} \end{array}$$

б) при расположении полей допусков по схеме 2:


$$\begin{split} \mathbf{E}_{\text{max}} = & D_{\text{max}} + \mathbf{es_3} = 20,16 - 0,03 = 20,13 \text{ MM} \\ \mathbf{E}_{\text{min}} = & D_{\text{max}} + \mathbf{el_3} = 20,16 - 0,05 = 20,11 \text{ MM} \\ \mathbf{E}_{\text{M3H}} = & D_{\text{max}} + \mathbf{ew_3} = 20,16 - 0,00 = 20,16 \text{ MM}. \\ \mathbf{M}_{\text{max}} = & D_{\text{min}} + \mathbf{es_4} = 19,84 + 0,02 = 19,86 \text{ MM} \\ \mathbf{M}_{\text{min}} = & D_{\text{min}} + \mathbf{el_4} = 19,84 + 0,00 = 19,84 \text{ MM} \\ \mathbf{M}_{\text{M3H}} = & D_{\text{min}} + \mathbf{ew_4} = 19,84 + 0,08 = 19,92 \text{ MM} \end{split}$$

в) при расположении полей допусков по схеме 3:


$$E_{\max} = D_{\max} + es_4 = 20,16+0,00=20,16$$
 MM $E_{\min} = D_{\max} + ei_4 = 20,16-0,02=20,14$ MM $E_{\max} = D_{\max} + ew_4 = 20,16-0,05=20,11$ MM $E_{\max} = D_{\min} + es_4 = 19,84+0,02=19,86$ MM $E_{\min} = D_{\min} + ei_4 = 19,84+0,00=19,84$ MM $E_{\max} = D_{\min} + ew_4 = 19,84+0,05=19,92$ MM



Черт. 1 Первая позиция

Черт. 2 Вторая позиция

Черт. 3